- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

这些因素都会导致FRP筋材料的性能在火灾中逐步退化,造成FRP筋混凝土结构的破坏,严重威胁使用安全。因此,FRP筋混凝土结构抗火性能的研究对其在土木工程中的应用至关重要,提供这种结构的抗火设计方法和抗火防护措施势在必行。另外,当混凝土结构遭遇火灾后,钢筋或者GFRP筋和混凝土力学性能的劣化可能导致火灾后结构的安全性和耐久性不足,银川GRC材料需随结构的损伤及剩余承载力进行计算和评估,进而对确定是否能继续服役及灾后加固修复的选择具有重要的现实意义。为了研究火灾环境中FRP筋材料和FRP筋增强混凝土结构的力学性能,保证FRP筋增强混凝土结构在火灾条件下的安全性,国外研究者从20世纪开始进行了尝试性的试验研究和理论分析。但目前国内外对FRP筋混凝土结构的抗火问题还没有系统深入,研究工作的欠缺导致对FRP筋混凝土结构的抗火性能认识不足,缺乏信心,从而影响了FRP筋在工程中的推广应用。银川GRC材料基于此,本章对钢筋混凝土结构中应用最多的钢筋变形钢筋和钢筋的补充及替代的材料GFRP筋进行高温后力学性能的试验研究。

虽然因为缺氧不会产生明火,但是FRP筋中的黏结树脂和连续纤维本身均会受到高温的影响,致使纤维筋的强度随温度的升高而发生变化。银川GRC材料日前有关高温后FRP筋力学性能的试验研究还不是很多,有关抗剪的就更少了。常温下FRP筋的抗拉强度和抗剪强度相差很大高温下FRP筋的抗拉强度损失较大,抗剪强度也会随温度而变化,因此需要研究高温后FRP筋的抗剪性能。试验概况,试验方案,试件直径为中10mm、中12mm的GP筋和中10 mm GMP筋,试验温度取为室温、100℃、150℃、200℃、250℃、300℃、350℃共计7个工况。为了研究升温和降温过程对GFRP筋材料的影响,在每个温度条件下分别有一组试件在高温后进行剪切试验,共计21组,每组3个试件,共63个试件。本试验主要研究温度、直径、基体树脂、烧失量等参数对GFRP筋剪切性能的影响,记录试验现象并分析剪切破坏机理。银川GRC材料试验方法,参考《纤维增强塑料冲压式剪切强度试验方法》(GBT1450-2005)、《销剪切试验方法》(GB/T13683-1992)和相关文献,采用CMT系列计算机控制50kN电子万能试验机并配以压式剪切器进行剪切试验。具体试验方法如下。

随后剪切强度有所波动,但总体还是呈增加的趋势,只是较之前增幅较小。银川GRC材料GFRP筋剪切强度的影响,高温后的剪切强度比常温时略有增加,增幅在10%以内;300℃后剪切强度开始剧减;中10mmGP筋350℃时的剪切只有常温时的60.76%,而必12mmGP筋降幅更多,只有常温时的56.55%。中10mmGP筋的曲线在中12mmGP筋的下侧,说明直径小的剪切强度小于直径大的剪切强度,剪切强度随直径的增大而增大。基体树脂、温度对剪切强度的影响,前面的拉伸试验表明,对树脂的改性增加了基体的刚性,降低了基体的强度,而基体树脂是影响GFRP筋剪切强度的一个重要因素,由此可推断,树脂的改性对GFRP筋的剪切强度也有较明显的影响。这一推断的试验数据和不同基体GFRP筋剪切强度的对比也得到了验证,可以看出,GMP筋的剪切强度在110~145MPa之间变化,约是抗拉强度的30%;银川GRC材料与GP筋相比,GMP筋(对树脂改性后的GFRP筋)在常温时的剪切强度和高温后的剪切强度均低于GP筋常温及高温后的剪切强度。对树脂的改性降低了基体的强度,而基体树脂是影响GFRP筋剪切强度的一个重要因素。

烧失量对GFRP筋拉伸性能的影响每知:中10mmGP筋温度低于200℃时,烧失量为1g:当温度升高至250时,烧失量增加到2g;银川GRC材料当温度升高至350℃时,烧失量增至5g。说明随着温度的升高,烧失量越来越大,并且温度高于200℃后,直径大的烧失量增加更快。当温度升至350℃时,412mmGP筋高温后高温试验段的GFRP筋试件烧失量达6g,随着烧失量的增加GFRP筋试件的拉伸性能随之变化。是烧失量对极限抗拉强度的影响,说明随着烧失量的增加,极限抗拉强度呈降低的趋势。是烧失量对拉伸弹性模量的影响,表明随着烧失量的增加,弹性模量降低。表明随着温度升高,高温试验段的性能逐渐劣化。试验中发现,当试验温度高于250℃时,高温后的GFRP筋开始明显变软,说明从250℃起,黏结胶体的热分解和炭化已经非常严重,对玻璃纤维丝的黏结作用已经基本丧失在300℃、350℃两种温度时,试件非常容易在高温试验段折断,说明从250℃起,GMP筋材中的玻璃纤维丝的强度也因为受热而变得不稳定。破坏形态,试件的典型破坏形态。银川GRC材料可以看出:随所受热温度不同,试件的破坏形态有着很大的不同,并且有着明显的阶段性。

配箍试件劈裂基本无声响,试件表面细小裂缝从出现到延伸贯通历经几级加荷,达到峰值荷载时,压力表显示读数迅速下降接近0力且无法再次加上,混凝土表面裂缝宽度较无配箍试件破坏时小很多,如图521所示,表现出一定延性性质。银川GRC材料此外,无论配箍还是无配箍劈裂破坏试件,GFRP筋表面均有明显的磨损,筋与混凝土的咬合齿未完全被剪坏,孔壁GFRP筋肋轮廓形状还比较清晰,由此可说明破坏时GFRP筋并未沿纵向产生较大滑移。发生混凝土劈裂破坏的主要有以下几种情况。对于筋直径12mm的试件,搭接长度120mm、混凝土保护层厚度30mm和45mm的全部试件以及个别保护层厚度60mm的无配箍试件发生混凝土保护层劈裂破坏。此外,混凝土强度为C30,以及配箍试件中,箍筋间距大于60mm的大部分试件也发生劈裂破坏。搭接长度180mm的试件,其破坏形态大部分与搭接长度120mm的相一致,只是随搭接长度的增大,个别试件承载能力超过GFRP筋的好的极限抗拉强度时筋被拉断。银川GRC材料对于直径10mm的试件,搭接长度120mm和180mm的均无劈裂破坏现象。

玻璃纤维丝本身的强度和性能随温度的升高逐渐劣化。其中弹性模量的下降幅度不大,这是因为影响GFRP筋弹性模量的主要原因是其中的玻璃纤维丝,在试验温度范围内对玻璃纤维丝弹性模量的影响不大。银川GRC材料基体树脂,基体树脂对GFRP筋试件极限抗拉强度、弹性模量和极限应变的影响。室温试验时相同直径的GMP筋试件比GP筋的极限抗拉强度有所降低,降低幅度为70.71%;350℃高温后试验时相同直径的GMP筋比GP筋的极限抗拉强度降低了50.30%;说明基体树脂里加入抗阻燃剂降低了GFRP筋试件的极限抗拉强度。但是GMP筋的弹性模量比相同直径的GP筋的弹性模量有所提高,室温试验时GMP筋的弹性模量比相同直径的GP筋的弹性模量提高了8.75%。也可以知,350℃高温后GMP筋的极限应变比室温时降低了24.29%;银川GRC材料室温时GMP筋的极限应变比相同直径的GP筋的极限应变降低了26.65%;350℃高温后GMP筋的极限应变比相同直径的GP筋的极限应变降低了6.28%。直径,实测直径对GFRP筋抗拉强度的影响。从数据可以看出,随直径的增大,GP筋的抗拉强度逐渐增大,室温试验时12mmGP筋比ψ10mmGP筋的极限抗拉强度增加了63.16%。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号