- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

度依次降低1.21MPa、3.9MPa,对应降幅分别为9.36%、30.16%。榆林GRC构件搭接长度180mm试件的降幅较大,是因为试验试件发生劈裂破坏和筋拉断破坏,无论哪种破坏形式,其破坏时黏结强度都要小于黏结破坏时的极限值,故较之于搭接长度60mm、120mm发生筋拔出破坏的试件,其黏结强度降低较多。搭接长度为240mm、300mm、360mm的全部试件均表现为荷载达到GFRP筋的抗拉强度,筋被拉断,此种破坏形态并非黏结破坏。相对于黏结破坏,GFRP筋被拉断破坏时,其与混凝土之间没有达到最大黏结应力,黏结应力在搭接长度范围内分布相对均匀一些,因此黏结强度随搭接长度的增加变化较小。此外,从其余各表中可以看出,混凝土强度、试件保护层厚度、配箍率、筋直径等各参数变化时,破坏形态等不同致使降低率变化幅度在5.40%~35.89%之间,但黏结强度随搭接长度增大而变小的规律不变。混凝土保护层厚度,不同混凝土保护层厚度试件GFRP筋与混凝土间的黏结强度变化的规律。榆林GRC构件从中可以看出,黏结强度随着混凝土保护层厚度的增大而提高。搭接长度为120mm时,混凝土保护层厚度从30mm变化到60mm,黏结强度依次增加了1.09MPa、3.92MPa,增长率分别为13.97%、50.26%。

能够自动测量抗扭强度、屈服点,配备扭转计可测量切变模量、规定非比例扭转应力,而且能够自动记录扭矩与转角的曲线。榆林GRC构件试验机配有全数字测量控制系统,性能稳定,精度高。所用抗扭试件,使用的是肋间距为27mm,缠绕物分别为尼龙绳和玻璃纤维带的两种GFRP筋。试验现象,对于尼龙绳缠绕的GFRP筋进行测试时,当抗扭试验机逐步增加扭矩的过程中,筋材表面会逐渐出现一些细小的裂痕,当扭矩达到一定程度时,试件会突然破坏并出现严重的扭曲,甚至变成“麻花状”;对于玻璃纤维袋缠绕的GFRP筋,刚开始加载时与一般GFRP筋材相差无几,在达到规定的扭矩时玻璃纤维带缠绕的GFRP筋在破坏前会保持相当长的一段时间,即将破坏时,先发生缠绕带的断裂剥落,緊接着整个筋材发生破坏,形成以近似的“屈服平台”,这将有利于锚杆支护中锚杆的嵌入与防损坏。榆林GRC构件表面缠绕尼龙绳的GFRP筋不能达到行业标准规定的P筋材的抗扭力矩应达到的40N·m,用玻璃纤维带缠绕的GFRP筋则都能达到40N·m;缠尼龙绳的GFRP筋几乎都是在达到最大扭矩时发生脆性破坏,没有一个近似“屈服平台”,这对于锚杆支护的应用不利。

随后剪切强度有所波动,但总体还是呈增加的趋势,只是较之前增幅较小。榆林GRC构件GFRP筋剪切强度的影响,高温后的剪切强度比常温时略有增加,增幅在10%以内;300℃后剪切强度开始剧减;中10mmGP筋350℃时的剪切只有常温时的60.76%,而必12mmGP筋降幅更多,只有常温时的56.55%。中10mmGP筋的曲线在中12mmGP筋的下侧,说明直径小的剪切强度小于直径大的剪切强度,剪切强度随直径的增大而增大。基体树脂、温度对剪切强度的影响,前面的拉伸试验表明,对树脂的改性增加了基体的刚性,降低了基体的强度,而基体树脂是影响GFRP筋剪切强度的一个重要因素,由此可推断,树脂的改性对GFRP筋的剪切强度也有较明显的影响。这一推断的试验数据和不同基体GFRP筋剪切强度的对比也得到了验证,可以看出,GMP筋的剪切强度在110~145MPa之间变化,约是抗拉强度的30%;榆林GRC构件与GP筋相比,GMP筋(对树脂改性后的GFRP筋)在常温时的剪切强度和高温后的剪切强度均低于GP筋常温及高温后的剪切强度。对树脂的改性降低了基体的强度,而基体树脂是影响GFRP筋剪切强度的一个重要因素。

由此可推断,树脂的改性对GFRP筋的剪切强度有较明显的影响,并且随温度的升高GMP筋和GP筋的剪切强度呈现相似的变化规律。榆林GRC构件常温时GP筋的剪切强度比GMP筋高29.01%,150℃后GP筋的剪切强度继续增加,到200℃高温后剪切强度达最大值193.32MPa,比常温时增加了31.91%,而GMP筋的剪切强度在200℃高温后开始降低,到300℃高温后剪切强度比常温时已经下降了16.37%;在250℃、300℃高温后GFRP筋的剪切强度比常温时略有增加;两种类型的筋在350℃高温后的剪切强度与常温时相比都已经剧烈地下降,GP筋的剪切强度比常温时的降低了60.76%,GMP筋的残余强度更低,比常温时的降低了66.66%。从曲线上看,GP筋的剪切强度比GMP筋的剪切强度随温度变化大,GMP筋的曲线较平缓,对温度的敏感性较GFRP筋小。从以上分析,可以大致确定,FRP筋的耐高温极限为300℃。烧失量对剪切强度的影响,烧失量为0时剪切强度随温度的升高有增加的趋势;随着烧失量从0增加到1g,剪切强度直线下降,榆林GRC构件说明黏结树脂的分解降低了GFRP筋的抗剪承载力;当烧失量超0mGm|过1g时,剪切强度更是剧减,说明黏结胶体的热分解和炭化已经非常严重,对玻璃纤维丝的黏结作用已经基本丧失。

尤其是保护层厚度从45mm增至60mm,破坏形态从劈裂破坏变化为筋拔出破坏,黏结强度增加显著。榆林GRC构件搭接长度为180mm时,混礙士保护层厚度从30mm变化到60mm,黏结强度依次增加了1.9MPa、2.52MPa,增长率分别为29.19%、3.71%。混凝土保护层厚度从30mm变化至45mm时,黏结强度显著增大,由45mm增至60mm时,增加较小。分析其原因,从混凝土保护层厚度45mm的全部试件劈裂破坏到6mm的部分试件劈裂破坏、部分试件筋拉断破坏,发生的都是非黏结破坏黏结强度均未达到黏结破坏的极限值。混凝土保护层增大,加强了GFRP筋外围混凝土的抗劈裂能力,保护层达到一定厚度时,试件的破坏形态随之变化,非黏结破坏转变为黏结破坏,从而显著提高了试件的黏结强度。混凝土强度,不同混凝土强度的试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随着混凝土强度的提高而提高。榆林GRC构件对于搭接长度为120mm的试件,混凝土强度从C30变化至C35,黏结强度增加1.99MPa,增长率为20.45%,增长显著;强度从C35变化至C40时,黏结强度增加2.43MPa,增长率为24.97%,增长较少。

GFRP螺纹筋经过pH=5的H2SO4溶液浸泡90天后,拉伸强度由602.51MPa上升到610MPa,榆林GRC构件变化幅度为1.2%。弹性模量由41.68GPa上升到44.3GPa,基本保持不变。碱性溶液,将GFRP筋泡在碱性环境[1L水中含有118.5g的Ca(OH)2、0.9g的NaOH和4.2g的KOH,溶液的pH值为12.8,以后每隔1~2周测试一次pH值,均保持在12.5左右。接近于混凝土与水泥砂浆的环境]中3个月(温度变化为0~40℃),检测来看,表面出现较明显的溶胀现象,并伴有发黏、发白的状态。直径12mm和25mm的GFRP筋浸泡3个月前后对比,试验用GFRP筋直径由24.20mm,减少到23.83mm,又2个月后减少到23.74mm;试验用GFRP筋直径由12.25mm,减少到12.19mm,榆林GRC构件又2个月后减少到12.14mm经过测试,研究人员没有发现GFRP筋(乙烯基树脂)在常温情况下,产品力学性能出现明显的降低。盐溶液,为了确认GFRP筋对于氯离子的抵抗能力,采用28mm、由乙烯基酯树脂生产的玻璃纤维筋进行测试,试验条件如下。(1)NaCl溶液的配制,①由130kg水、7.8 kg nacl配制得到浓度为6%的NaCl溶液。②由110kg水、40 kg naCl配制得到饱和NaCl溶液。(2)GFRP螺纹筋的浸泡将GFRP螺纹筋分别放入两种NaCl溶液中常温浸泡,浸泡时间为30天、90天。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号