- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号
当搭接长度为1.6倍锚固长度时,梁能够达到极限受弯承载力。美国ACI40.1R-06《纤维增强聚合物(FRP)筋增强混凝土结构设计建造指南》根据有限的试验数据和工程经验,兼顾FRP筋强度利用率并保留一定安全储备,建议搭接长度取为1.3。(l为FRP筋的基本锚固长度)。青海GRC国内对于FRP筋与和混凝土的黏结性能研究起步较晚,但已有不少学者致力于FRP筋与混凝土黏结性能的研究,进行了大量试验和理论分析研究,取得丰硕的成果。通过FRP筋和混凝土的梁式试验、对拉试验和标准立方体拉拔试验,探讨了GFRP筋直径、肋间距表面形态、黏结长度等对黏结性能的影响,分析了两者的黏结机理和受力过程,提出了GFRP筋与混凝土之间的黏结强度和锚固长度的设计建议。我国《纤维增强复合材料建设工程应用技术规范》结合工程经验,并保留一定安全储备,建议在没有试验数据可供参考时,GFRP筋的搭接长度可取为40d。青海GRC目前,GFRP筋的搭接性能相关研究较少,为了推进GFRP筋材料及GFRP筋混凝土结构形式在我国的应用,有必要对GFRP筋的搭接性能进行深入研究,以保证GFRP筋混凝土结构的安全性和可靠性。本章研究的主要内容如下。

配箍试件劈裂基本无声响,试件表面细小裂缝从出现到延伸贯通历经几级加荷,达到峰值荷载时,压力表显示读数迅速下降接近0力且无法再次加上,混凝土表面裂缝宽度较无配箍试件破坏时小很多,如图521所示,表现出一定延性性质。青海GRC此外,无论配箍还是无配箍劈裂破坏试件,GFRP筋表面均有明显的磨损,筋与混凝土的咬合齿未完全被剪坏,孔壁GFRP筋肋轮廓形状还比较清晰,由此可说明破坏时GFRP筋并未沿纵向产生较大滑移。发生混凝土劈裂破坏的主要有以下几种情况。对于筋直径12mm的试件,搭接长度120mm、混凝土保护层厚度30mm和45mm的全部试件以及个别保护层厚度60mm的无配箍试件发生混凝土保护层劈裂破坏。此外,混凝土强度为C30,以及配箍试件中,箍筋间距大于60mm的大部分试件也发生劈裂破坏。搭接长度180mm的试件,其破坏形态大部分与搭接长度120mm的相一致,只是随搭接长度的增大,个别试件承载能力超过GFRP筋的好的极限抗拉强度时筋被拉断。青海GRC对于直径10mm的试件,搭接长度120mm和180mm的均无劈裂破坏现象。

能够自动测量抗扭强度、屈服点,配备扭转计可测量切变模量、规定非比例扭转应力,而且能够自动记录扭矩与转角的曲线。青海GRC试验机配有全数字测量控制系统,性能稳定,精度高。所用抗扭试件,使用的是肋间距为27mm,缠绕物分别为尼龙绳和玻璃纤维带的两种GFRP筋。试验现象,对于尼龙绳缠绕的GFRP筋进行测试时,当抗扭试验机逐步增加扭矩的过程中,筋材表面会逐渐出现一些细小的裂痕,当扭矩达到一定程度时,试件会突然破坏并出现严重的扭曲,甚至变成“麻花状”;对于玻璃纤维袋缠绕的GFRP筋,刚开始加载时与一般GFRP筋材相差无几,在达到规定的扭矩时玻璃纤维带缠绕的GFRP筋在破坏前会保持相当长的一段时间,即将破坏时,先发生缠绕带的断裂剥落,緊接着整个筋材发生破坏,形成以近似的“屈服平台”,这将有利于锚杆支护中锚杆的嵌入与防损坏。青海GRC表面缠绕尼龙绳的GFRP筋不能达到行业标准规定的P筋材的抗扭力矩应达到的40N·m,用玻璃纤维带缠绕的GFRP筋则都能达到40N·m;缠尼龙绳的GFRP筋几乎都是在达到最大扭矩时发生脆性破坏,没有一个近似“屈服平台”,这对于锚杆支护的应用不利。

随后剪切强度有所波动,但总体还是呈增加的趋势,只是较之前增幅较小。青海GRCGFRP筋剪切强度的影响,高温后的剪切强度比常温时略有增加,增幅在10%以内;300℃后剪切强度开始剧减;中10mmGP筋350℃时的剪切只有常温时的60.76%,而必12mmGP筋降幅更多,只有常温时的56.55%。中10mmGP筋的曲线在中12mmGP筋的下侧,说明直径小的剪切强度小于直径大的剪切强度,剪切强度随直径的增大而增大。基体树脂、温度对剪切强度的影响,前面的拉伸试验表明,对树脂的改性增加了基体的刚性,降低了基体的强度,而基体树脂是影响GFRP筋剪切强度的一个重要因素,由此可推断,树脂的改性对GFRP筋的剪切强度也有较明显的影响。这一推断的试验数据和不同基体GFRP筋剪切强度的对比也得到了验证,可以看出,GMP筋的剪切强度在110~145MPa之间变化,约是抗拉强度的30%;青海GRC与GP筋相比,GMP筋(对树脂改性后的GFRP筋)在常温时的剪切强度和高温后的剪切强度均低于GP筋常温及高温后的剪切强度。对树脂的改性降低了基体的强度,而基体树脂是影响GFRP筋剪切强度的一个重要因素。

玻璃纤维丝本身的强度和性能随温度的升高逐渐劣化。其中弹性模量的下降幅度不大,这是因为影响GFRP筋弹性模量的主要原因是其中的玻璃纤维丝,在试验温度范围内对玻璃纤维丝弹性模量的影响不大。青海GRC基体树脂,基体树脂对GFRP筋试件极限抗拉强度、弹性模量和极限应变的影响。室温试验时相同直径的GMP筋试件比GP筋的极限抗拉强度有所降低,降低幅度为70.71%;350℃高温后试验时相同直径的GMP筋比GP筋的极限抗拉强度降低了50.30%;说明基体树脂里加入抗阻燃剂降低了GFRP筋试件的极限抗拉强度。但是GMP筋的弹性模量比相同直径的GP筋的弹性模量有所提高,室温试验时GMP筋的弹性模量比相同直径的GP筋的弹性模量提高了8.75%。也可以知,350℃高温后GMP筋的极限应变比室温时降低了24.29%;青海GRC室温时GMP筋的极限应变比相同直径的GP筋的极限应变降低了26.65%;350℃高温后GMP筋的极限应变比相同直径的GP筋的极限应变降低了6.28%。直径,实测直径对GFRP筋抗拉强度的影响。从数据可以看出,随直径的增大,GP筋的抗拉强度逐渐增大,室温试验时12mmGP筋比ψ10mmGP筋的极限抗拉强度增加了63.16%。

1mmGP筋的极限应变先随温度升高而降低,100℃时降至整个试验温度范围的最低点,青海GRC随后开始逐渐增大,350℃时达最大值,比常温时增加了36.66%;10mm GMP筋极限应变先随温度升高小幅增大,100℃时达最大值,随后逐渐降低,300℃时降至最小值,比常温时降低了38.33%;小12mmGP筋的极限应变温度低于300℃时和常温相差不多,350℃时极限应变急剧降低,比常温时降低了44.12%。350℃高温后GFRP筋极限抗拉强度维持在室温时的80%以上,但是由于到达此温度时GFRP筋已经变得极为柔软,刚度很小,弹性模量不足常温时的70%,所以即使高室温后极限强度有所恢复,建议GFRP筋的耐高温极限仍然不能高于300℃。可以看出:GFRP筋的极限荷载、极限抗拉强度、平均拉伸弹性模量和极限应变在温度较高时比常温低。青海GRC造成GFRP筋强度、弹性模量和极限应变降低的主要原因有3方面:①黏结胶体随温度的升高逐渐玻璃化、炭化和热分解,导致对抗拉强度的贡献逐渐减小乃至丧失;②黏结胶体黏结作用的降低导致GFRP筋纤维丝协同受力的能力下降,最终导致GFRP筋性能的劣化。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号