- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

当温度达到300℃时,破断处的GMP筋有部分纤维被拉毛;温度达到350℃时破断处也为蓬松的絮状物。成都GRC构件说明:①温度高于350℃时黏结胶体已经完全炭化,降温后胶体的黏结性能将不能恢复;②加入阻燃剂对GMP筋高温性能影响不是非常明显,温度低于300℃时破断处的纤维被拉毛的情况较GP筋相同温度少些,但当温度高于350℃时阻燃剂的加入对GMP筋的抗高温性能没有明显的改善。影响因素分析,采用贴应变片的方法量测GFRP筋的应变,只能量测60%~80%极限荷载对应的应变。弹性模量一般取为10%~50%极限荷载对应应变时的弹性模量。是GFRP筋室温和高温后的应力应变曲线。从图中可以看出:室温与高温后的应力-应变曲线相似,直至试件破坏前,这些试件的应力应变曲线基本是呈理想的线弹性,由于应变片只能测得60%~70%极限荷载对应的应变,所以没有下降段。成都GRC构件GFRP筋极限抗拉强度和弹性模量以及极限应变的计算方法参照文献中采用的计算高温后GFRP筋的残余极限抗拉强度采用与常温下相同的方法。荷载变形曲线初始直线段(10%Pb~50%Pb)的荷载增量。

混凝土强度C30的试件,全部表现为混凝土劈裂破坏,而混凝土强度C35、C40的试件,大部分为筋拔出破坏,故混凝土强度从C30变化至C35时黏结强度增长显著,而C35变化到C40时增长较少。成都GRC构件对于搭接长度为180mm的试件,混凝土强度从C30变化至C35时,黏结强度提高了0.58MPa,增长率为6.86%,增长较小;而混凝土强度从C35变化至C40时,黏结强度提高了1.7MPa,增长率为20.12%,增长显著。观察试件破坏形态,随搭接长度由120l8omm变化,试件极限破坏荷载增大,混凝土承受的环向拉力增大,同C30的混凝土样、即便是C35的混凝土试件也大多发生劈裂破坏。当混凝土强度增至C40时,混凝土抗劈拉强度继续增长,此时试件大多发生筋被拉断的破坏,而GFRP筋能承受的极限拉力较于劈裂破坏荷载大,故较之于C30、C35混凝土试件,C40的黏结强度有显著提高。黏结强度随混凝土强度增长而增长的原因如下。成都GRC构件当试件发生拔出破坏时,GFRP筋的黏结强度主要取决于两者之间的机械咬合力。混凝土强度较低时,GFRP筋肋间的混凝土易被压碎;而混凝土强度较高时,GFRP筋肋剪切强度低于混凝土的抗压强度,GFRP筋肋被剪坏。

当GP筋受热后,成都GRC构件在100℃时试件表面的颜色几乎没有什么改变,仍然呈白色;在150℃时,高温试验段的GP筋表面为很浅的黄色;200℃、250℃、300℃三种温度时高温试验段的颜色逐渐加深,由焦黄色→褐色→接近炭黑色;350℃时GP筋高温试验段的表面颜色已经完全呈炭黑色。(a)100℃时的试件颜色;(b)150℃时的试件颜色;(d)250℃时的试件颜色;(c)200℃时的试件颜色;(e)300℃时的试件颜色;(f)350℃时的试件颜色。然而,GMP筋常温时的颜色呈黑色,高温后颜色没有改变,还是呈现黑色,因此单从颜色很难判断GMP筋经历了多高的温度以及是否炭化。GP筋试件表面颜色的变化是因为黏结胶体的炭化引起的。从表面颜色的变化可以看出试件随温度的变化过程:在温度低于150℃时,黏结胶体没有炭化,所以GP筋材表面的颜色没有发生变化;成都GRC构件在150℃时黏结胶体开始轻微炭化,并且随温度的升高,炭化逐步加剧所以随温度的升高,GP筋的颜色逐渐加深;在300℃时GP筋的黏结胶体已经炭化很严重所以高于此温度后试件都呈现炭黑色。

增式件的黏结强度一无配箍试件的黏结强度)/无配箍试件的黏结强度×100%。注:表中显示的是直径1mm,混凝土强度C35,搭接长度分别为120mm、180mm,不同配箍率试件黏结强度。注:表中显示的是直径16mm,混凝土强度C35,搭接长度分别为120mm、180mm,不同配箍率试件黏结强度。成都GRC构件增长率计算方法。搭接长度18mm的试件,箍筋间距为8mm、60mm、40mm时,比较于相同搭接长度的无配箍试件,搭接强度依次增加了0.26MPa、0.15MPa、0.4MPa,增长率分别为2.8%、1.6%、4.43%。箍筋间距8σmm时,搭接段横跨箍筋数较搭接长度120mm的多些,表现出来对提高试件抗劈裂能力有一定作用。搭接长度180mm试件,不少为GFRP筋拉断破坏,增大配箍率和提高混凝土抗劈拉能力对其并没有影响,对于发生劈裂破坏的情况,配置箍筋可以避免劈裂破坏,其黏结强度会有所提高。所以整体看来,对搭接长度180mm的试件配以箍筋所起到的作用不及搭接长度120mm的作用效果明显,相同配箍率,前者黏结强度增长率仅为4.43%,后者为9.9%。此外,成都GRC构件直径10mm、16mm的配箍试件较无配箍试件黏结强度也均有不同程度的提高。

试验中发现,加热过程中,聚合物逐渐热解,试验温度越高,电炉口烟气越大,说明聚合物热解量越大。成都GRC构件当试验温度高于300℃时,炉口的烟雾多且持续的时间长,高温试验段的GP筋开始明显变软,说明从300℃开始GP筋的热分解和炭化已经非常严重,此时筋的黏结胶体已经基本失去对玻璃纤维丝的黏结作用;350℃时高温试验段的GP筋已经变得非常柔软,能像纤维绳一样弯曲,说明此时GP筋的黏结胶体已经几乎完全分解和炭化,刚度几乎丧失殆尽,且很容易折断。说明此时GP筋的纤维丝由于高温的作用也已经变得不稳定350℃时的烧失量一般在3g左右。破坏形态,GP筋试件的典型破坏形态。试件常温下的破坏形态和高温后的破坏形态有明显的差异,且有明显的阶段性。成都GRC构件常温下,试件首先在中部薄弱面引发裂缝源,当荷载达到破坏荷载的30%~50%时,试件开始发出“噼啪”响声,应为纤维剥离树脂的声音,随着荷载的继续增大,纤维开始逐渐断裂,响声不断加大且更加密集,达到极限荷载时伴随着巨大的响声,试件成条束状爆裂破坏。

其中,直径10mm、搭接长度180mm的试件表现为黏结强度与是否配置箍筋无关,成都GRC构件主要是因为搭接长度180mm的试件全部发生筋拉断破坏,为非黏结破坏。虽然配箍率对黏结强度影响不大,但配箍试件试验结果离散性小,且破坏表现出一定延性。搭接长度不很大时,配箍率的增大,改善了试件受力不均匀性,限制裂缝开展,加强了GFRP筋外围混凝土的抗劈裂能力。GFRP筋直径,不同筋直径试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随GFRP筋直径的增加。注:表中显示的是混凝土强度C35,搭接长度分别为120mm、180mm,降低率=(GFRP筋直径10mm试件的黏结强度一其他直径试件的黏结强度)度×100%。显示的是混凝土强度C35,搭接长度分别为120mm、180mm,箍筋箍试件的黏结强度。(a)搭接长度120mm试件搭接长度120mm、180mm无配箍试件黏结强度随搭接长度120mm的无配箍试件,从直径10mm、12mm到0.12MPa、0.95MPa,降低率分别为1.01%、8.02%。分析其GFRP筋表面的变形大于其横截面中心的变形,这会导分布不均匀,即剪切滞后现象。成都GRC构件直径越大,横截面面积越大,剪切滞后现象就越明显,GFRP筋与混凝土的黏结强度也就会GFRP筋直径越大,包裹在筋表面的混凝土泌水越大,FRP筋与混凝土之间的接触面积减小,造成GFRP筋降低。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号