- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

两搭接筋黏结-自由端相对滑移曲线和黏结-加载端滑移曲线有类似的变化趋势,随荷载增大,曲线由线性向非线性过渡。兰州GRG构件自由端在荷载较小时,无相对滑移,而加载筋产生滑移较早。荷载继续増加趋近极限荷载时,GFRP筋与混凝土之间的滑移量继续增大且增速加快,黏结-滑移曲线出现明显转折且逐渐趋于平缓。黏结强度影响因素分析,搭接长度,不同搭接长度试件的GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随搭接长度的增加而降低。显示了直径12mm,混凝土强度等级C35,搭接长度60mm(5d)~360mm(30d),以60mm(5a)梯度变化的无配箍试件黏结强度。兰州GRG构件搭接长度为60~180mm时,黏结强度随搭接长度的增加而降低,降低趋势明显,变化幅度较大;而当搭接长度为240~36omm时,黏结强度随搭接长度的增加而降低的幅度有所减小。与变形钢筋与混凝土的黏结类似,GFRP筋与混凝土之间的黏结应力在整个搭接长度范围内分布不均匀,并且搭接长度越大,黏结应力的分布就越不均匀。当发生黏结破坏时,平均黏结应力与最大黏结应力值相差越远,从而造成GFRP筋与混凝土之间的平均黏结强度随搭接长度的增加而降低。

300℃、350℃两个温度时随温度的升高炭化逐步加深,试件中黏结胶体的炭化程度已经很高,可以看出从250℃开始GMP筋表面的颜色变得更黑为直径对拉伸弹性模量的影响规律。兰州GRG构件由数据可知,随着直径的增大,拉伸弹性模量呈增大的趋势,室温试验时12mmGP筋试件比少0mmGP筋的弹性模量逐渐增加了7.9%,350℃高温后试验时中12mmGP筋比10mmGP筋的弹性模量增加了5.1%为直径对极限应变的影响规律。数据可知,随着直径的增加,室温试验时GFRP筋试件的极限应变有少量增加,即直径大的GFRP筋试件的延伸性能好些;然而350℃高温后试验时中12mmGP筋比41mmGP筋的极限应变由于自身的原因随直径的增大有所降低。恒温时间,为了研究恒温时间对GFRP筋试件材性的影响,300℃时进行了恒温30min、60min、90min、120min四个不同恒温时间的试验。可以看出,GFRP筋的极限抗拉强度在恒温60min时达最大值,9omin、120min时比60min时有所降低;兰州GRG构件随恒温时间的增加,拉伸弹性模量逐渐増大;平均极限应变随恒温时间的增加小幅度减小。造成这一结果的原因是随恒温时间的增加,GFRP筋试件炭化、分解越来越严重,所以极限应变随恒温时间的增加降低。

浸泡后的GFRP螺纹筋再进行拉伸试验将浸泡后的GFRP螺纹筋取出后,用清水将表面洗净。测试结果如下。①GFRP螺纹筋经过6%的NaCl溶液浸泡30天后,兰州GRG构件拉伸强度由604.75MPa下降到583.28MPa,拉伸强度保持率达96.45%,下降幅度仅为3.55%。②弹性模量由43.21GPa下降到43.19GPa,基本保持不变。③GFRP螺纹筋经过6%的NaCl溶液中浸泡90天后,拉伸强度由604.75MPa下降到598.10MPa,下降幅度仅1.1%。④弹性模量由43.21GPa下降到41.44GPa,下降幅度为4.1%。⑤GFRP螺纹筋在饱和NaCl溶液中浸泡30天后,拉伸强度由604.75MPa下降到575.72MPa,性能保持率达95.20%,下降幅度仅为4.80%。⑥弹性模量由43.21GPa下降到40.08GPa,兰州GRG构件性能保持率达92.76%,下降了7.24%。⑦GFRP螺纹筋在饱和NaCl溶液中浸泡90天后,拉伸强度由604.75MPa下降到56.83MPa,性能保持率达93.73%,下降幅度约为6.27%。⑧弹性模量由43.21GPa下降到41.78GPa,下降幅度约为3.3%。乙烯基酯树脂制得的GFRP螺纹筋在NaCl溶液中浸泡30天和90天后,拉伸性能方面的下降并不是十分明显,说明乙烯基树脂的耐氯离子的能力较强。GFRP筋的高温力学性能,研究内容,随着国民经济现代化建设的发展,高层建筑不断涌现,房屋密度加大。

这些因素都会导致FRP筋材料的性能在火灾中逐步退化,造成FRP筋混凝土结构的破坏,严重威胁使用安全。因此,FRP筋混凝土结构抗火性能的研究对其在土木工程中的应用至关重要,提供这种结构的抗火设计方法和抗火防护措施势在必行。另外,当混凝土结构遭遇火灾后,钢筋或者GFRP筋和混凝土力学性能的劣化可能导致火灾后结构的安全性和耐久性不足,兰州GRG构件需随结构的损伤及剩余承载力进行计算和评估,进而对确定是否能继续服役及灾后加固修复的选择具有重要的现实意义。为了研究火灾环境中FRP筋材料和FRP筋增强混凝土结构的力学性能,保证FRP筋增强混凝土结构在火灾条件下的安全性,国外研究者从20世纪开始进行了尝试性的试验研究和理论分析。但目前国内外对FRP筋混凝土结构的抗火问题还没有系统深入,研究工作的欠缺导致对FRP筋混凝土结构的抗火性能认识不足,缺乏信心,从而影响了FRP筋在工程中的推广应用。兰州GRG构件基于此,本章对钢筋混凝土结构中应用最多的钢筋变形钢筋和钢筋的补充及替代的材料GFRP筋进行高温后力学性能的试验研究。

1mmGP筋的极限应变先随温度升高而降低,100℃时降至整个试验温度范围的最低点,兰州GRG构件随后开始逐渐增大,350℃时达最大值,比常温时增加了36.66%;10mm GMP筋极限应变先随温度升高小幅增大,100℃时达最大值,随后逐渐降低,300℃时降至最小值,比常温时降低了38.33%;小12mmGP筋的极限应变温度低于300℃时和常温相差不多,350℃时极限应变急剧降低,比常温时降低了44.12%。350℃高温后GFRP筋极限抗拉强度维持在室温时的80%以上,但是由于到达此温度时GFRP筋已经变得极为柔软,刚度很小,弹性模量不足常温时的70%,所以即使高室温后极限强度有所恢复,建议GFRP筋的耐高温极限仍然不能高于300℃。可以看出:GFRP筋的极限荷载、极限抗拉强度、平均拉伸弹性模量和极限应变在温度较高时比常温低。兰州GRG构件造成GFRP筋强度、弹性模量和极限应变降低的主要原因有3方面:①黏结胶体随温度的升高逐渐玻璃化、炭化和热分解,导致对抗拉强度的贡献逐渐减小乃至丧失;②黏结胶体黏结作用的降低导致GFRP筋纤维丝协同受力的能力下降,最终导致GFRP筋性能的劣化。

由于黏结树脂对高温比较敏感,当温度高于一定限值时会发生玻璃化,即处于流塑状态,它对纤维丝的黏结作用会逐渐退化乃至丧失;处于高温环境中的连续纤维丝的性能也会发生不同程度的变化。兰州GRG构件因为高温下FRP筋的各种组成材料本身的变化,造成FRP筋的力学性能也会发生相应的变化。Rehm和 Franke以及Sen研究发现,E-玻璃的熔化温度为1260℃,但在200℃时其强度比20℃时要下降很多,当温度达到550℃时,玻璃纤维的抗拉强度仅是室温条件下的1/2;黏结树脂的玻璃化点一般在100~200℃,超过这一温度树脂将会发生玻璃化、热分解和炭化,从而失去黏结能力;由黏结材料和玻璃纤维丝共同组成的整体—GFRP筋材在100℃时的强度大约是20°C时的70%(钢材大约是95%),若温度高于400°C,则下降到30%(钢材大约是50%)。由此可以看出:高温对GFRP筋材的影响是巨大的。兰州GRG构件当火灾发生时,处于火场中的建筑构件均受到高温环境的影响,虽然处于混凝土保护层之内的FRP筋不直接暴露在火场中,但其周围的环境温度会随过火时间的延长而逐渐升高。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号