- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

不同于单根筋黏结,搭接筋接触缺少混凝土握裹,与混凝土黏结也会相对弱一些。为保证连接可靠,同时充分利用筋材强度,合适的搭接长度十分关键。郑州GRC构件国外一般采用梁式黏结试验方法开展钢筋的搭接性能研究,在试验梁的纯弯段进行搭接,变化参数包括钢筋端部形状、配箍率、搭接百分率(25%、50%)、钢筋类别4个参数,通过观察荷载-挠度曲线和裂缝形态,研究了搭接钢筋对试验梁受力性能的影响。对于FRP筋,参照钢筋搭接性能的研究方法,改变搭接长度、筋直径和保护层厚度,进行了GFRP筋和CFRP筋搭接性能的试验研究。研究结果表明,搭接段能够很好地传递作用力,随着搭接段长度的增加,梁的裂缝区域和裂缝数量都会减少。郑州GRC构件随保护层厚度的增加,搭接段GFRP筋的黏结强度非线性增长,但保护层厚度增加到一定程度,搭接强度不再增长。进而分析了FRP筋对梁极限受弯承载力的影响,并对不同直径FRP筋的平均黏结强度和临界搭接长度进行了讨论。总之,FRP筋的黏结强度比钢筋的小很多,且筋材的弹性模量对黏结强度的影响很大。

在GFRP筋接近破坏时,可以明显看到表面部分纤维東也逐渐被拉断,随着断裂纤维束的增多,GFRP筋中部突然发生“爆裂式”破坏,破坏部位纤维呈发散状,同时飞散岀许多细小纤维,此时试验结束,试件呈现明显的脆性破坏特征。郑州GRC构件100℃、150℃、200℃高温后的试验现象和破坏形态与常温下相似,临近破坏前的响声减弱,但破坏时的声音却仍然很大,伴随着“啪”的一声爆响,试件突然破坏;破坏处仍为发散状,说明玻璃纤维丝之间在温度降至室温后又恢复了部分黏结性能,可以协同受力。温度升至250°C、300℃C时,断口处的GP筋颜色从白色逐渐变为焦黄色,但在250°C时仍然较浅;随着温度的升高,破坏处夹杂的絮状物逐渐增多,当试验温度为300°C时,破坏处的条状物已经明显减少,稍显蓬松的絮状物增加。郑州GRC构件这些现象说明,GP筋的黏结胶体由外至内逐渐玻璃化、分解,降低了对玻璃纤维丝的黏结作用,玻璃纤维丝协同工作的能力下降。断口处颜色呈褐色,夹杂少许絮状物,说明黏结胶体在降温后黏结性能有所恢复。

虽然因为缺氧不会产生明火,但是FRP筋中的黏结树脂和连续纤维本身均会受到高温的影响,致使纤维筋的强度随温度的升高而发生变化。郑州GRC构件日前有关高温后FRP筋力学性能的试验研究还不是很多,有关抗剪的就更少了。常温下FRP筋的抗拉强度和抗剪强度相差很大高温下FRP筋的抗拉强度损失较大,抗剪强度也会随温度而变化,因此需要研究高温后FRP筋的抗剪性能。试验概况,试验方案,试件直径为中10mm、中12mm的GP筋和中10 mm GMP筋,试验温度取为室温、100℃、150℃、200℃、250℃、300℃、350℃共计7个工况。为了研究升温和降温过程对GFRP筋材料的影响,在每个温度条件下分别有一组试件在高温后进行剪切试验,共计21组,每组3个试件,共63个试件。本试验主要研究温度、直径、基体树脂、烧失量等参数对GFRP筋剪切性能的影响,记录试验现象并分析剪切破坏机理。郑州GRC构件试验方法,参考《纤维增强塑料冲压式剪切强度试验方法》(GBT1450-2005)、《销剪切试验方法》(GB/T13683-1992)和相关文献,采用CMT系列计算机控制50kN电子万能试验机并配以压式剪切器进行剪切试验。具体试验方法如下。

荷载逐渐増大接近极限荷载时,玻璃纤维岀现的“噼里啪啦”断裂声变得密集且声响较加载初期大,加载端滑移明显增大,且两自由端的相对滑移值增大速率变快,伴随混凝土试件内发出“咯噔咯噔”的声响,GFRP筋从试件中拔出,混凝土表面没有出现任何肉眼可见的裂缝,筋的肋凸起明显磨损。郑州GRC构件相应在GFRP筋肋前有挤压形成的楔状堆积,GFRP筋与混凝土咬合齿也磨损严重,混凝土孔壁上有些许粉末状混凝土覆盖,GFRP筋肋的轮廓因为纵向挤压擦痕的缘故已基本磨平。往往搭接长度大些的试件刚拔出时压力表显示读数并未立刻卸为0,试件还能承受较小残余荷载,为拔出试件破坏形态。发生筋拔出破坏的主要有以下几种情况。对于筋直径12mm的试搭接长度60mm的GFRP筋全部发生拔出破坏;搭接长度120mm、保护层厚度60mm的无配箍试件,箍筋间距大于80mm的配箍试件,以及混凝土强度大于C40的大部分发生筋拔出破坏。郑州GRC构件对于直径10mm的试件,搭接长度120mm的大多无配箍试件以及大部分配有箍筋试件为拔出破坏。而直径16mm的试件,个别搭接长度120mm的配箍试件大多发生拔岀破坏。

高温后GFRP筋的残余弹性模量采用与常温下相同的方法。极限应变通过极限抗拉强度和弹性模量由下式求得。郑州GRC构件各因素对GFRP筋力学性能的影响如下。温度,温度对GFRP筋试件极限抗拉强度、平均弹性模量和平均极限应变的影响。中10mmGP筋极限抗拉强度在温度低于200℃时呈现增加的趋势,在200℃时达最大值,比常温时增加了18.85%,随后开始逐渐降低,小10mmGP筋350℃时极限抗拉强度比常温时降低了5.19%;410 mm gMP筋极限抗拉强度在100℃时达最大值,比常温时增加了9.91%,随后开始逐渐降低,10 mm gMP筋350℃时极限抗拉强度比常温时降低了37.35%;φ12mmGP筋350℃时极限抗拉强度比室温时降低了26.16%,由于GFRP筋材离散性较大,温度对它影响的规律性不明显,并且在试验温度范围内极限抗拉强度有所波动。郑州GRC构件φl0mmGP筋弹性模量温度低于200℃时呈现增加的趋势,200℃时达最大值,比常温时增加了27.63%,随后随温度升高逐渐下降,350℃时比常温时降低了20.29%;φ1 mm GMP筋弹性模量在温度低于300℃时和常温相差不多,350℃时弹性模量急剧降低,比常温时降低了21.4%;φ12mmGP筋弹性模量先降低,随后又有所增加,350℃时比常温时降低了22.44%。

GFRP筋在250℃时,GFRP筋表面颜色进一步加深,已经接近于炭黑色;300℃、350℃两种温度时,GFRP筋表面颜色均呈炭黑色,这种温度条件下GFRP筋高温试验段的表面颜色已没有明显的区别试件表面颜色的变化是因为黏结胶体的炭化引起的。郑州GRC构件从表面颜色的变化可以看出试件随温度的变化过程:在温度低于100℃时,黏结胶体没有炭化,所以GFRP筋材表面颜色并未发生改变;在150℃时,黏结胶体开始发生炭化,并且随温度的升高炭化程度加剧,所以在150~250℃时,随着温度的升高,试件表面的颜色逐渐加深;在250℃时,试件中黏结胶体的炭化程度已经很高,所以高于250℃的试件表面颜色均呈炭黑色。为加阻燃剂的玻璃纤维筋(GMP)在各温度下的情况,常温时颜色为黑色。250℃之前GMP筋发生的变化单从表面很难观察到,与常温下基本相同,但是温度增加至250℃时能很明显地看到GMP筋表面的纤维暴露,郑州GRC构件这是由于黏结胶体发生炭化所致,这时GMP筋表面的纤维丝一根一根地暴露在外,GMP筋由于黏结胶体的炭化不再是一个整体。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号