- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

由此可推断,树脂的改性对GFRP筋的剪切强度有较明显的影响,并且随温度的升高GMP筋和GP筋的剪切强度呈现相似的变化规律。陕西GRC常温时GP筋的剪切强度比GMP筋高29.01%,150℃后GP筋的剪切强度继续增加,到200℃高温后剪切强度达最大值193.32MPa,比常温时增加了31.91%,而GMP筋的剪切强度在200℃高温后开始降低,到300℃高温后剪切强度比常温时已经下降了16.37%;在250℃、300℃高温后GFRP筋的剪切强度比常温时略有增加;两种类型的筋在350℃高温后的剪切强度与常温时相比都已经剧烈地下降,GP筋的剪切强度比常温时的降低了60.76%,GMP筋的残余强度更低,比常温时的降低了66.66%。从曲线上看,GP筋的剪切强度比GMP筋的剪切强度随温度变化大,GMP筋的曲线较平缓,对温度的敏感性较GFRP筋小。从以上分析,可以大致确定,FRP筋的耐高温极限为300℃。烧失量对剪切强度的影响,烧失量为0时剪切强度随温度的升高有增加的趋势;随着烧失量从0增加到1g,剪切强度直线下降,陕西GRC说明黏结树脂的分解降低了GFRP筋的抗剪承载力;当烧失量超0mGm|过1g时,剪切强度更是剧减,说明黏结胶体的热分解和炭化已经非常严重,对玻璃纤维丝的黏结作用已经基本丧失。

反力架本试验中特别制作反力架以施加对拉荷载。反力架包括4根长1.1m、材质为345、直径为36mm的全套丝螺杆以及配套的16个螺母,螺杆全套丝,以便于调节加载间距;1块大小400mm×400m×4mm的Q235承压钢板,2块400mm、400mm×35mmQ235钢板。陕西GRC其中2块A0m×400mmx35mm的钢板打孔后沿中缝切开,便于试件快速装卸。反力架加载示意制作加工试验所需零部件。80点CM2B静态应变采集仪。试件的破坏形态分析,拔出破坏,试件发生拔出做坏一般有两种形式。一种是光面GFRP筋拔出或带肋GHRP筋肋被混凝土剪坏而拔出。光面GFRP筋与混凝土的黏结主要靠化学胶结力和摩擦力,而两者提供的黏结力都很小,所以此类GFRP筋与混凝土的黏结很差,所以较少应用于混凝土构件中。陕西GRC同时,由于国内目前GFRP筋生产工艺还不够完善,表面带肋(FRP筋工作性能不是很稳定,表面横肋易脱落或是抗剪较弱。另外一种是GFRP筋肋间混凝土被剪坏。试验中两种形式均有出现试验中发生拔出破坏的试件,加载初期,GFRP筋承受拉力逐渐增大,外围玻璃纤维开始断裂并伴随“啪啪”声响,加载端在荷载较小时就开始滑移,随荷载继续增大,自由端发生滑移滑移较慢且滑移量小。

对于直径16mm的试件,搭接长度120mm和180mm无配箍试件全部表现为剧烈劈裂破坏,而配有箍筋的试件大多也都发生劈裂破坏。陕西GRC这是因为黏结长度大、直径大的试件,相同黏结强度条件下承担的破坏荷载更大,GFRP筋对周围混凝土产生的环向拉应力也就更大,当环向拉应力大于混凝土的抗拉强度时,就会出现在混凝土薄弱部位劈裂破坏;保护层小的试件,混凝土对GFRP筋的握裹力较小,导致GFRP筋达到抗拉强度之前混凝土开裂破坏。由此可以看出,GFRP筋直径较大、保护层厚度较小或混凝土强度较低的试件大多发生劈裂破坏。筋拉断破坏,搭接长度180mm、发生筋拉断破坏的试件以及搭接长度240mm的试件,在荷载较小时加载筋及自由端均无滑移。当荷载加大到一定程度时,加载筋开始滑移,随后自由端也一并滑移,但滑移量很小且滑移增长很慢。而搭接长度为300mm和360mm的试件,自由端基本无滑移。陕西GRC当荷载增长至GFRP筋抗拉极限时,混凝土表面仍无裂缝出现。伸出试件表面的GFRP筋发出“吭吭”的响声,GFRP筋外围纤维呈小束拉断拉毛并迅速扩展至全截面,断裂发生在筋较为薄弱截面。

增式件的黏结强度一无配箍试件的黏结强度)/无配箍试件的黏结强度×100%。注:表中显示的是直径1mm,混凝土强度C35,搭接长度分别为120mm、180mm,不同配箍率试件黏结强度。注:表中显示的是直径16mm,混凝土强度C35,搭接长度分别为120mm、180mm,不同配箍率试件黏结强度。陕西GRC增长率计算方法。搭接长度18mm的试件,箍筋间距为8mm、60mm、40mm时,比较于相同搭接长度的无配箍试件,搭接强度依次增加了0.26MPa、0.15MPa、0.4MPa,增长率分别为2.8%、1.6%、4.43%。箍筋间距8σmm时,搭接段横跨箍筋数较搭接长度120mm的多些,表现出来对提高试件抗劈裂能力有一定作用。搭接长度180mm试件,不少为GFRP筋拉断破坏,增大配箍率和提高混凝土抗劈拉能力对其并没有影响,对于发生劈裂破坏的情况,配置箍筋可以避免劈裂破坏,其黏结强度会有所提高。所以整体看来,对搭接长度180mm的试件配以箍筋所起到的作用不及搭接长度120mm的作用效果明显,相同配箍率,前者黏结强度增长率仅为4.43%,后者为9.9%。此外,陕西GRC直径10mm、16mm的配箍试件较无配箍试件黏结强度也均有不同程度的提高。

试件发生劈裂破坏时,随着混凝土强度的增大,混凝土的抗劈拉强度提高,对应试件破坏荷载增大,黏结强度提高。注:表中显示的是直径12mm,搭接长度分别为120mm、180mm,不同混凝土强度无配箍试件的黏结强度。陕西GRC混凝土强度C35、C40试件的黏结强度一混凝土强度C30试件的黏结强度)/混凝土强度C30试件的黏结强度×100%。配箍率,不同配箍率试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随着配箍率的增大而提高,对于GFRP筋直径12mm、搭接长度120mm的试件,当箍筋间距80mm时,黏结强度较无配箍试件降低了0.17MPa;箍筋间距为6mm、40mm时,黏结强度依次增加了0.37MPa、1.16MPa,增长率分别为3.16%、9.9%。当箍筋间距为8omm时,搭接段只横跨了两根箍筋,对提高外围混凝土抗劈裂能力基本无作用;随箍筋间距减小,配箍率增大,搭接段橫跨箍筋数增多,箍筋和架立筋形成骨架对核心混凝土起到围箍作用,箍筋承担了部分劈拉力,使得试件的抗劈拉能力增强。陕西GRC显示的是直径12mm,混凝土强度C35,搭接长度分别为120mm、180mm,不同配箍率试件黏结强度。

1mmGP筋的极限应变先随温度升高而降低,100℃时降至整个试验温度范围的最低点,陕西GRC随后开始逐渐增大,350℃时达最大值,比常温时增加了36.66%;10mm GMP筋极限应变先随温度升高小幅增大,100℃时达最大值,随后逐渐降低,300℃时降至最小值,比常温时降低了38.33%;小12mmGP筋的极限应变温度低于300℃时和常温相差不多,350℃时极限应变急剧降低,比常温时降低了44.12%。350℃高温后GFRP筋极限抗拉强度维持在室温时的80%以上,但是由于到达此温度时GFRP筋已经变得极为柔软,刚度很小,弹性模量不足常温时的70%,所以即使高室温后极限强度有所恢复,建议GFRP筋的耐高温极限仍然不能高于300℃。可以看出:GFRP筋的极限荷载、极限抗拉强度、平均拉伸弹性模量和极限应变在温度较高时比常温低。陕西GRC造成GFRP筋强度、弹性模量和极限应变降低的主要原因有3方面:①黏结胶体随温度的升高逐渐玻璃化、炭化和热分解,导致对抗拉强度的贡献逐渐减小乃至丧失;②黏结胶体黏结作用的降低导致GFRP筋纤维丝协同受力的能力下降,最终导致GFRP筋性能的劣化。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号