- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

随后剪切强度有所波动,但总体还是呈增加的趋势,只是较之前增幅较小。甘肃GRC线条GFRP筋剪切强度的影响,高温后的剪切强度比常温时略有增加,增幅在10%以内;300℃后剪切强度开始剧减;中10mmGP筋350℃时的剪切只有常温时的60.76%,而必12mmGP筋降幅更多,只有常温时的56.55%。中10mmGP筋的曲线在中12mmGP筋的下侧,说明直径小的剪切强度小于直径大的剪切强度,剪切强度随直径的增大而增大。基体树脂、温度对剪切强度的影响,前面的拉伸试验表明,对树脂的改性增加了基体的刚性,降低了基体的强度,而基体树脂是影响GFRP筋剪切强度的一个重要因素,由此可推断,树脂的改性对GFRP筋的剪切强度也有较明显的影响。这一推断的试验数据和不同基体GFRP筋剪切强度的对比也得到了验证,可以看出,GMP筋的剪切强度在110~145MPa之间变化,约是抗拉强度的30%;甘肃GRC线条与GP筋相比,GMP筋(对树脂改性后的GFRP筋)在常温时的剪切强度和高温后的剪切强度均低于GP筋常温及高温后的剪切强度。对树脂的改性降低了基体的强度,而基体树脂是影响GFRP筋剪切强度的一个重要因素。

高温后GFRP筋的残余弹性模量采用与常温下相同的方法。极限应变通过极限抗拉强度和弹性模量由下式求得。甘肃GRC线条各因素对GFRP筋力学性能的影响如下。温度,温度对GFRP筋试件极限抗拉强度、平均弹性模量和平均极限应变的影响。中10mmGP筋极限抗拉强度在温度低于200℃时呈现增加的趋势,在200℃时达最大值,比常温时增加了18.85%,随后开始逐渐降低,小10mmGP筋350℃时极限抗拉强度比常温时降低了5.19%;410 mm gMP筋极限抗拉强度在100℃时达最大值,比常温时增加了9.91%,随后开始逐渐降低,10 mm gMP筋350℃时极限抗拉强度比常温时降低了37.35%;φ12mmGP筋350℃时极限抗拉强度比室温时降低了26.16%,由于GFRP筋材离散性较大,温度对它影响的规律性不明显,并且在试验温度范围内极限抗拉强度有所波动。甘肃GRC线条φl0mmGP筋弹性模量温度低于200℃时呈现增加的趋势,200℃时达最大值,比常温时增加了27.63%,随后随温度升高逐渐下降,350℃时比常温时降低了20.29%;φ1 mm GMP筋弹性模量在温度低于300℃时和常温相差不多,350℃时弹性模量急剧降低,比常温时降低了21.4%;φ12mmGP筋弹性模量先降低,随后又有所增加,350℃时比常温时降低了22.44%。

①对GFRP筋纵向拉伸性能进行试验研究。甘肃GRC线条确定其基本力学性能(包括抗拉强度、弹性模量和极限应变),为此类筋材研究提供材性依据。②对GFRP筋的搭接强度进行试验研究。试验参数包括GFRP筋搭接长度、混凝土保护层厚度、混凝土强度、配箍率、GFRP筋直径,分析在上述参数下GFRP筋搭接强度的变化规律和机理。③对试验得到的GFRP筋与混凝土黏结滑移曲线进行研究。分析在GFRP筋搭接长度、混凝土保护层厚度、混凝土强度、配箍率、GFRP筋直径5参数影响下黏结-滑移(搭接筋的两自由端相对滑移)曲线的变化,并分析其原因。④通过在搭接段中点和四分点粘贴应变片,分析各级荷载下搭接段应变分布及变化情况,研究其搭接性能。⑤基于试验结果,提出GFRP筋的搭接强度计算公式及GFRP筋在混凝土中的搭接长度计算公式,为确定受拉GFRP筋搭接长度合理取值提供试验和理论依据。FRP筋与混凝土的搭接性能试验概况。试验方法,与钢筋搭接一样,FRP筋的绑扎搭接接头传力,其本质是FRP筋在混凝土中的锚固。甘肃GRC线条FRP筋的绑扎搭接接头是采用镀锌铁丝将两根筋并排搭接绑扎,而铁丝绑扎只是为了固定搭接筋,形成牢固的平面网架或空间骨架。

①试样外观检查、状态调节按GB1446规定。②测量试样尺寸,测量精度精确到0.01mm。③升温速率10℃/min,升至试验温度然后恒温30。④加载速度2mm/min,连续加载至试样发生剪切破坏。⑤记录试样破坏后的最大荷载和破坏形式。⑥甘肃GRC线条有明显缺陷的试样应予以作废,每组有效试样至少3个,不足3个时,应重做试验。⑦剪切强度计算公式中τ—GFRP筋剪切强度,MPa;P—GFRP筋破坏时最大荷载,N;A—GFRP筋工作的横截面积,mm2;D—GFRP筋工作段实测直径,mm、试件设计本试验选用郑州大学纤维复合材料FRP筋试验室生产的GFRP筋。剪切试件在连续GFRP筋上截取,根据压式剪切器相关参数,截取试件长度L=130mm。试验现象,表观特征,可知:GFRP筋的自然颜色为白色,当GFRP筋受热后,100°℃时试件表面的颜色几乎没有改变,仍然呈白色,纤维绳没有任何松动;在150℃时,GFRP筋表面微呈焦煳状,为很浅的黄色,纤维绳开始松动,并且端部断掉;甘肃GRC线条在200℃时,GFRP筋表面焦煳状进一步加剧,为很浅的黄黑色,纤维绳完全脱离筋表面,纤维绳烧焦。

当GP筋受热后,甘肃GRC线条在100℃时试件表面的颜色几乎没有什么改变,仍然呈白色;在150℃时,高温试验段的GP筋表面为很浅的黄色;200℃、250℃、300℃三种温度时高温试验段的颜色逐渐加深,由焦黄色→褐色→接近炭黑色;350℃时GP筋高温试验段的表面颜色已经完全呈炭黑色。(a)100℃时的试件颜色;(b)150℃时的试件颜色;(d)250℃时的试件颜色;(c)200℃时的试件颜色;(e)300℃时的试件颜色;(f)350℃时的试件颜色。然而,GMP筋常温时的颜色呈黑色,高温后颜色没有改变,还是呈现黑色,因此单从颜色很难判断GMP筋经历了多高的温度以及是否炭化。GP筋试件表面颜色的变化是因为黏结胶体的炭化引起的。从表面颜色的变化可以看出试件随温度的变化过程:在温度低于150℃时,黏结胶体没有炭化,所以GP筋材表面的颜色没有发生变化;甘肃GRC线条在150℃时黏结胶体开始轻微炭化,并且随温度的升高,炭化逐步加剧所以随温度的升高,GP筋的颜色逐渐加深;在300℃时GP筋的黏结胶体已经炭化很严重所以高于此温度后试件都呈现炭黑色。

由此可推断,树脂的改性对GFRP筋的剪切强度有较明显的影响,并且随温度的升高GMP筋和GP筋的剪切强度呈现相似的变化规律。甘肃GRC线条常温时GP筋的剪切强度比GMP筋高29.01%,150℃后GP筋的剪切强度继续增加,到200℃高温后剪切强度达最大值193.32MPa,比常温时增加了31.91%,而GMP筋的剪切强度在200℃高温后开始降低,到300℃高温后剪切强度比常温时已经下降了16.37%;在250℃、300℃高温后GFRP筋的剪切强度比常温时略有增加;两种类型的筋在350℃高温后的剪切强度与常温时相比都已经剧烈地下降,GP筋的剪切强度比常温时的降低了60.76%,GMP筋的残余强度更低,比常温时的降低了66.66%。从曲线上看,GP筋的剪切强度比GMP筋的剪切强度随温度变化大,GMP筋的曲线较平缓,对温度的敏感性较GFRP筋小。从以上分析,可以大致确定,FRP筋的耐高温极限为300℃。烧失量对剪切强度的影响,烧失量为0时剪切强度随温度的升高有增加的趋势;随着烧失量从0增加到1g,剪切强度直线下降,甘肃GRC线条说明黏结树脂的分解降低了GFRP筋的抗剪承载力;当烧失量超0mGm|过1g时,剪切强度更是剧减,说明黏结胶体的热分解和炭化已经非常严重,对玻璃纤维丝的黏结作用已经基本丧失。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号