- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

尤其是保护层厚度从45mm增至60mm,破坏形态从劈裂破坏变化为筋拔出破坏,黏结强度增加显著。榆林GRC线条搭接长度为180mm时,混礙士保护层厚度从30mm变化到60mm,黏结强度依次增加了1.9MPa、2.52MPa,增长率分别为29.19%、3.71%。混凝土保护层厚度从30mm变化至45mm时,黏结强度显著增大,由45mm增至60mm时,增加较小。分析其原因,从混凝土保护层厚度45mm的全部试件劈裂破坏到6mm的部分试件劈裂破坏、部分试件筋拉断破坏,发生的都是非黏结破坏黏结强度均未达到黏结破坏的极限值。混凝土保护层增大,加强了GFRP筋外围混凝土的抗劈裂能力,保护层达到一定厚度时,试件的破坏形态随之变化,非黏结破坏转变为黏结破坏,从而显著提高了试件的黏结强度。混凝土强度,不同混凝土强度的试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随着混凝土强度的提高而提高。榆林GRC线条对于搭接长度为120mm的试件,混凝土强度从C30变化至C35,黏结强度增加1.99MPa,增长率为20.45%,增长显著;强度从C35变化至C40时,黏结强度增加2.43MPa,增长率为24.97%,增长较少。

荷载逐渐増大接近极限荷载时,玻璃纤维岀现的“噼里啪啦”断裂声变得密集且声响较加载初期大,加载端滑移明显增大,且两自由端的相对滑移值增大速率变快,伴随混凝土试件内发出“咯噔咯噔”的声响,GFRP筋从试件中拔出,混凝土表面没有出现任何肉眼可见的裂缝,筋的肋凸起明显磨损。榆林GRC线条相应在GFRP筋肋前有挤压形成的楔状堆积,GFRP筋与混凝土咬合齿也磨损严重,混凝土孔壁上有些许粉末状混凝土覆盖,GFRP筋肋的轮廓因为纵向挤压擦痕的缘故已基本磨平。往往搭接长度大些的试件刚拔出时压力表显示读数并未立刻卸为0,试件还能承受较小残余荷载,为拔出试件破坏形态。发生筋拔出破坏的主要有以下几种情况。对于筋直径12mm的试搭接长度60mm的GFRP筋全部发生拔出破坏;搭接长度120mm、保护层厚度60mm的无配箍试件,箍筋间距大于80mm的配箍试件,以及混凝土强度大于C40的大部分发生筋拔出破坏。榆林GRC线条对于直径10mm的试件,搭接长度120mm的大多无配箍试件以及大部分配有箍筋试件为拔出破坏。而直径16mm的试件,个别搭接长度120mm的配箍试件大多发生拔岀破坏。

GFRP螺纹筋经过pH=5的H2SO4溶液浸泡90天后,拉伸强度由602.51MPa上升到610MPa,榆林GRC线条变化幅度为1.2%。弹性模量由41.68GPa上升到44.3GPa,基本保持不变。碱性溶液,将GFRP筋泡在碱性环境[1L水中含有118.5g的Ca(OH)2、0.9g的NaOH和4.2g的KOH,溶液的pH值为12.8,以后每隔1~2周测试一次pH值,均保持在12.5左右。接近于混凝土与水泥砂浆的环境]中3个月(温度变化为0~40℃),检测来看,表面出现较明显的溶胀现象,并伴有发黏、发白的状态。直径12mm和25mm的GFRP筋浸泡3个月前后对比,试验用GFRP筋直径由24.20mm,减少到23.83mm,又2个月后减少到23.74mm;试验用GFRP筋直径由12.25mm,减少到12.19mm,榆林GRC线条又2个月后减少到12.14mm经过测试,研究人员没有发现GFRP筋(乙烯基树脂)在常温情况下,产品力学性能出现明显的降低。盐溶液,为了确认GFRP筋对于氯离子的抵抗能力,采用28mm、由乙烯基酯树脂生产的玻璃纤维筋进行测试,试验条件如下。(1)NaCl溶液的配制,①由130kg水、7.8 kg nacl配制得到浓度为6%的NaCl溶液。②由110kg水、40 kg naCl配制得到饱和NaCl溶液。(2)GFRP螺纹筋的浸泡将GFRP螺纹筋分别放入两种NaCl溶液中常温浸泡,浸泡时间为30天、90天。

当温度达到300℃时,破断处的GMP筋有部分纤维被拉毛;温度达到350℃时破断处也为蓬松的絮状物。榆林GRC线条说明:①温度高于350℃时黏结胶体已经完全炭化,降温后胶体的黏结性能将不能恢复;②加入阻燃剂对GMP筋高温性能影响不是非常明显,温度低于300℃时破断处的纤维被拉毛的情况较GP筋相同温度少些,但当温度高于350℃时阻燃剂的加入对GMP筋的抗高温性能没有明显的改善。影响因素分析,采用贴应变片的方法量测GFRP筋的应变,只能量测60%~80%极限荷载对应的应变。弹性模量一般取为10%~50%极限荷载对应应变时的弹性模量。是GFRP筋室温和高温后的应力应变曲线。从图中可以看出:室温与高温后的应力-应变曲线相似,直至试件破坏前,这些试件的应力应变曲线基本是呈理想的线弹性,由于应变片只能测得60%~70%极限荷载对应的应变,所以没有下降段。榆林GRC线条GFRP筋极限抗拉强度和弹性模量以及极限应变的计算方法参照文献中采用的计算高温后GFRP筋的残余极限抗拉强度采用与常温下相同的方法。荷载变形曲线初始直线段(10%Pb~50%Pb)的荷载增量。

这些因素都会导致FRP筋材料的性能在火灾中逐步退化,造成FRP筋混凝土结构的破坏,严重威胁使用安全。因此,FRP筋混凝土结构抗火性能的研究对其在土木工程中的应用至关重要,提供这种结构的抗火设计方法和抗火防护措施势在必行。另外,当混凝土结构遭遇火灾后,钢筋或者GFRP筋和混凝土力学性能的劣化可能导致火灾后结构的安全性和耐久性不足,榆林GRC线条需随结构的损伤及剩余承载力进行计算和评估,进而对确定是否能继续服役及灾后加固修复的选择具有重要的现实意义。为了研究火灾环境中FRP筋材料和FRP筋增强混凝土结构的力学性能,保证FRP筋增强混凝土结构在火灾条件下的安全性,国外研究者从20世纪开始进行了尝试性的试验研究和理论分析。但目前国内外对FRP筋混凝土结构的抗火问题还没有系统深入,研究工作的欠缺导致对FRP筋混凝土结构的抗火性能认识不足,缺乏信心,从而影响了FRP筋在工程中的推广应用。榆林GRC线条基于此,本章对钢筋混凝土结构中应用最多的钢筋变形钢筋和钢筋的补充及替代的材料GFRP筋进行高温后力学性能的试验研究。

发生GFRP筋拉断破坏的主要有以下几种情况。对于直径12mm的试件,个别搭接长度180mm、保护层厚度60mm的无配箍试件和配箍试件,以及搭接长度240mm、300mm、360mm的全部试件均为GFRP筋拉断破坏。榆林GRC线条对于直径10mm的试件,个别搭接长度120mm的配箍、无配箍试件及搭接长度180mm的所有配箍、无配箍试件破坏为GFRP筋拉断。而对于直径16mm的试件,无筋被拉断的现象。筋拉断破坏属于非黏结破坏,GFRP筋与混凝土的黏结很好,两者间几乎没有发生相对滑移,试件破坏是由于外荷载产生的拉应力超过了GFRP筋的抗拉强度,GFRP筋被拉断而破坏。由此可以看出,保护层达到一定厚度,直径较小、搭接长度较大的试件大多发生筋拉断破坏。根据各级荷载对应的平均黏结应力τ、加载端滑移量S、两自由端相对滑移量S1,可以得到每个试件的加载端黏结滑移曲线和自由端黏结滑移曲线。榆林GRC线条由于试件超过极限荷载后,数据变化剧烈且很不稳定,人工无法准确读取卸载过程中的荷载值及相应的滑移量,本次试验只得到黏结滑移曲线的上升段。黏结滑移曲线分析中,以两搭接筋自由端相对滑移为主,加载筋滑移仅做参考。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号