- 在线留言
- 在线留言
服务热线
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

尤其是保护层厚度从45mm增至60mm,破坏形态从劈裂破坏变化为筋拔出破坏,黏结强度增加显著。重庆假山假树搭接长度为180mm时,混礙士保护层厚度从30mm变化到60mm,黏结强度依次增加了1.9MPa、2.52MPa,增长率分别为29.19%、3.71%。混凝土保护层厚度从30mm变化至45mm时,黏结强度显著增大,由45mm增至60mm时,增加较小。分析其原因,从混凝土保护层厚度45mm的全部试件劈裂破坏到6mm的部分试件劈裂破坏、部分试件筋拉断破坏,发生的都是非黏结破坏黏结强度均未达到黏结破坏的极限值。混凝土保护层增大,加强了GFRP筋外围混凝土的抗劈裂能力,保护层达到一定厚度时,试件的破坏形态随之变化,非黏结破坏转变为黏结破坏,从而显著提高了试件的黏结强度。混凝土强度,不同混凝土强度的试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随着混凝土强度的提高而提高。重庆假山假树对于搭接长度为120mm的试件,混凝土强度从C30变化至C35,黏结强度增加1.99MPa,增长率为20.45%,增长显著;强度从C35变化至C40时,黏结强度增加2.43MPa,增长率为24.97%,增长较少。

1mmGP筋的极限应变先随温度升高而降低,100℃时降至整个试验温度范围的最低点,重庆假山假树随后开始逐渐增大,350℃时达最大值,比常温时增加了36.66%;10mm GMP筋极限应变先随温度升高小幅增大,100℃时达最大值,随后逐渐降低,300℃时降至最小值,比常温时降低了38.33%;小12mmGP筋的极限应变温度低于300℃时和常温相差不多,350℃时极限应变急剧降低,比常温时降低了44.12%。350℃高温后GFRP筋极限抗拉强度维持在室温时的80%以上,但是由于到达此温度时GFRP筋已经变得极为柔软,刚度很小,弹性模量不足常温时的70%,所以即使高室温后极限强度有所恢复,建议GFRP筋的耐高温极限仍然不能高于300℃。可以看出:GFRP筋的极限荷载、极限抗拉强度、平均拉伸弹性模量和极限应变在温度较高时比常温低。重庆假山假树造成GFRP筋强度、弹性模量和极限应变降低的主要原因有3方面:①黏结胶体随温度的升高逐渐玻璃化、炭化和热分解,导致对抗拉强度的贡献逐渐减小乃至丧失;②黏结胶体黏结作用的降低导致GFRP筋纤维丝协同受力的能力下降,最终导致GFRP筋性能的劣化。

高温后GFRP筋的残余弹性模量采用与常温下相同的方法。极限应变通过极限抗拉强度和弹性模量由下式求得。重庆假山假树各因素对GFRP筋力学性能的影响如下。温度,温度对GFRP筋试件极限抗拉强度、平均弹性模量和平均极限应变的影响。中10mmGP筋极限抗拉强度在温度低于200℃时呈现增加的趋势,在200℃时达最大值,比常温时增加了18.85%,随后开始逐渐降低,小10mmGP筋350℃时极限抗拉强度比常温时降低了5.19%;410 mm gMP筋极限抗拉强度在100℃时达最大值,比常温时增加了9.91%,随后开始逐渐降低,10 mm gMP筋350℃时极限抗拉强度比常温时降低了37.35%;φ12mmGP筋350℃时极限抗拉强度比室温时降低了26.16%,由于GFRP筋材离散性较大,温度对它影响的规律性不明显,并且在试验温度范围内极限抗拉强度有所波动。重庆假山假树φl0mmGP筋弹性模量温度低于200℃时呈现增加的趋势,200℃时达最大值,比常温时增加了27.63%,随后随温度升高逐渐下降,350℃时比常温时降低了20.29%;φ1 mm GMP筋弹性模量在温度低于300℃时和常温相差不多,350℃时弹性模量急剧降低,比常温时降低了21.4%;φ12mmGP筋弹性模量先降低,随后又有所增加,350℃时比常温时降低了22.44%。

大量新型建筑料广泛应用,以及燃器、电器的普遍使用,建筑物的大规模化和功能的复杂化,导致火灾的因素随之增加,火灾规模也日趋扩大,大大增加了建筑物发生火灾的可能性且使火灾危害性更加严重。重庆假山假树高温作用下,材料性能受到不同程度的损伤,混凝土的强度和弹性模量随着温度而降低,钢筋虽有混凝土保护,但强度也会降低。若结构的环境温度升高很多,或度发生周期性变化时,结构会因使用性能下降或承载力下降而失效,发生局部破坏,整体倒塌。目前,国内外对钢筋的高温力学性能的研究较多,和钢筋相比,FRP筋材料热稳性较差,更不耐火。FRP筋是由高强连续纤维通过胶体黏结成的复合材料,当承受外部荷载时,众多黏合在一起的纤维丝可以均匀受力,共同工作性能良好。黏结胶体是高分子材料,对高温比较敏感,高于一定温度会产生玻璃化和炭化,从而导致黏结作用退化和丧失。重庆假山假树并且高于一定温度时,处于高温环境中的连续纤维丝的性能也会发生不同程度的变化,连续纤维材料的性质也变得不稳定。
荷载逐渐増大接近极限荷载时,玻璃纤维岀现的“噼里啪啦”断裂声变得密集且声响较加载初期大,加载端滑移明显增大,且两自由端的相对滑移值增大速率变快,伴随混凝土试件内发出“咯噔咯噔”的声响,GFRP筋从试件中拔出,混凝土表面没有出现任何肉眼可见的裂缝,筋的肋凸起明显磨损。重庆假山假树相应在GFRP筋肋前有挤压形成的楔状堆积,GFRP筋与混凝土咬合齿也磨损严重,混凝土孔壁上有些许粉末状混凝土覆盖,GFRP筋肋的轮廓因为纵向挤压擦痕的缘故已基本磨平。往往搭接长度大些的试件刚拔出时压力表显示读数并未立刻卸为0,试件还能承受较小残余荷载,为拔出试件破坏形态。发生筋拔出破坏的主要有以下几种情况。对于筋直径12mm的试搭接长度60mm的GFRP筋全部发生拔出破坏;搭接长度120mm、保护层厚度60mm的无配箍试件,箍筋间距大于80mm的配箍试件,以及混凝土强度大于C40的大部分发生筋拔出破坏。重庆假山假树对于直径10mm的试件,搭接长度120mm的大多无配箍试件以及大部分配有箍筋试件为拔出破坏。而直径16mm的试件,个别搭接长度120mm的配箍试件大多发生拔岀破坏。

试件发生劈裂破坏时,随着混凝土强度的增大,混凝土的抗劈拉强度提高,对应试件破坏荷载增大,黏结强度提高。注:表中显示的是直径12mm,搭接长度分别为120mm、180mm,不同混凝土强度无配箍试件的黏结强度。重庆假山假树混凝土强度C35、C40试件的黏结强度一混凝土强度C30试件的黏结强度)/混凝土强度C30试件的黏结强度×100%。配箍率,不同配箍率试件GFRP筋与混凝土间的黏结强度变化规律。从中可以看出,黏结强度随着配箍率的增大而提高,对于GFRP筋直径12mm、搭接长度120mm的试件,当箍筋间距80mm时,黏结强度较无配箍试件降低了0.17MPa;箍筋间距为6mm、40mm时,黏结强度依次增加了0.37MPa、1.16MPa,增长率分别为3.16%、9.9%。当箍筋间距为8omm时,搭接段只横跨了两根箍筋,对提高外围混凝土抗劈裂能力基本无作用;随箍筋间距减小,配箍率增大,搭接段橫跨箍筋数增多,箍筋和架立筋形成骨架对核心混凝土起到围箍作用,箍筋承担了部分劈拉力,使得试件的抗劈拉能力增强。重庆假山假树显示的是直径12mm,混凝土强度C35,搭接长度分别为120mm、180mm,不同配箍率试件黏结强度。
029-86627088
手机:18066565698
Q Q:190039943
邮箱:190039943@qq.com
地址:陕西省西安市未央区万象未央
微信公众号

陕公网安备 61011202000784号